DISPERSION OF TRAFFIC QUEUES

CJ Bester & E Els

Stellenbosch University
Hillier and Rothery, 1967
Contents

• Overview

• Literature Study
 ➢ Background
 ➢ Shifted negative exponential distribution

• Methodology

• Data Analysis

• Conclusions and Recommendations
Overview

• Traffic queues disperse as they progress from the intersection
• Natural forming headways:
 • Time
 • Distance
• Dispersion distance is crucial for signal timing and cycle lengths
• Time headway distribution models provide accurate representation of queue behaviour and road capacity
Literature study – background

- Time headway is measured from the leading vehicle’s nose to the following vehicle’s, passing a specific point P.

- Time headway distribution models:
 - Single headway
 - Mixed headway
Literature study – background

- Single headway distribution models:
 - Exponential
 - Normal
 - Gamma
 - Lognormal
- Mixed headway distribution models:
 - Semi-Poisson
 - Combined single statistical distributions
 - Followers and non-followers
 - Travelling queue distribution
- Shifted single headway models improves accuracy
Van As & Joubert, 1990
Literature study – Queue dispersion

• Queue Dispersion Behaviour – Queues become less dense further from intersection
• Formulate separation point at 3.5 seconds
• Negative exponential model interpolated from vehicle follower behaviour graph
• Shifted negative exponential model acquired by shifting with the minimum time headway
Methodology

- GoPro Hero2 HD video cameras positioned at distances 500, 1000 and 1500m from intersection
- Recording times 07:30-08:30, 11:00-12:00 and 16:30-17:30
- Stopwatch application
- Time headways categorised into second intervals
- Plot vehicle follower behaviour graph
- Negative exponential distribution interpolated
- Shifted negative exponential distribution
R310

SARF/IRF 2014 | 2-4 September, South Africa
Data Analysis

- **R310**
 - Multi-lane
 - Many passing opportunities
 - Chaotic right lane (Daganzo,)

- **R44**
 - Two-lane
 - Few passing opportunities

- **R44 has more accurate queue dispersion behaviour**
Data Analysis

<table>
<thead>
<tr>
<th>SEC. INTERVAL</th>
<th>QUANTITY</th>
<th>HEADWAYS EQUAL OR GREATER</th>
<th>% HEADWAYS EQUAL OR GREATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>342</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>107</td>
<td>234</td>
<td>68.42</td>
</tr>
<tr>
<td>2</td>
<td>82</td>
<td>152</td>
<td>44.44</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>116</td>
<td>33.92</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>97</td>
<td>28.36</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>84</td>
<td>24.56</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>71</td>
<td>20.76</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>65</td>
<td>19.01</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>60</td>
<td>17.54</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>54</td>
<td>15.79</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>51</td>
<td>14.91</td>
</tr>
<tr>
<td>NAN</td>
<td>51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>342</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Analysis
07:30 – 08:30

% Headways equal or greater

Headways (seconds)

500m
Data Analysis

07:30 – 08:30

% Headways equal or greater

0 2 4 6 8 10

Headways (seconds)

1 000m
Data Analysis

07:30 – 08:30

% Headways equal or greater

Headways (seconds)

1 500m
Results
07:30 – 08:30

\[s = 58.284e^{0.5493h} \]

- Dispersion points
- Dispersion point at 3.5 sec

Distance (m)

Headways (seconds)

(3.5, 399)
(4, 500)
(5, 1000)
(6, 1500)
Results

11:00 – 12:00

\[s = 31.25e^{0.6931h} \]

- Dispersion point
- Dispersion point at 3.5sec

\[(3.5, 354)\]
\[(4, 500)\]
\[(5, 1000)\]
Results

16:30 – 17:30

$s = 100.95e^{0.5493h}$

- Dispersion points
- Dispersion point at 3.5sec

(3, 500) (3.5, 690)

(4, 1000)

(5, 1500)
Shifted Negative Exponential Distribution

\[z = 100(1 - e^{-0.252t}) \]

\[z = 100(1 - e^{-0.252(t-0.407)}) \]
R310 Results:

• Dispersion distance = 595m
R310 Results:

- Time headway distribution models:
 \[z = 100(1 - e^{-0.255t}) \]
 \[z = 100(1 - e^{-0.255(t-0.653)}) \]
Conclusions

• Dispersion distance is affected by:
 • Traffic flow & composition
 • Higher speed limits
 • Multilane roads

• The Shifted Negative Exponential Distribution gives a good fit of the data
Recommendations

• Larger data set

• Recording distance not more than 900m

• Shorter distance intervals between recordings
THANK YOU