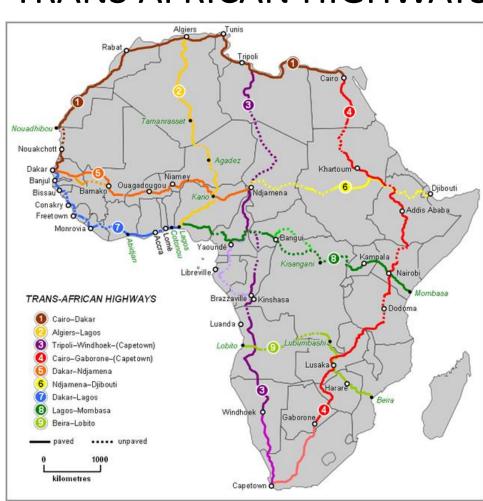


Economic Appraisal of roads using agricultural potential to determine economic feasibility of rural unpaved roads

- KINGSTONE GONGERA
 - TRL UK. ZIMBABWE

SARF/IRF 2014 BETTER ROADS Moving Africa 2 - 4 September CSIR Conference Centre, Pretoria


A multi-disciplinary approach to improve capacity & safety for road transport in Africa

TRANS AFRICAN HIGHWAYS

Agricultural productivity requires:

- Good road infrastructure
- Reliable energy supply
- Appropriate food storage facilities
- Efficient social and financial infrastructure
- Enabling government policies
- GoodGovernance

- ■Nearly 60% of Africa's population live in rural areas.
- ■60% subsistence farmers
- ■80% of Sub Saharan Africa made up of small holder agricultural plots.
- Agricultural productivity – on average 40% of potential

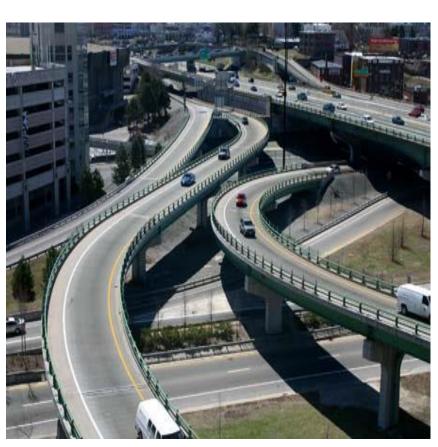
SARF/IRF 2014 BETTER ROADS Moving Africa 2 - 4 September CSIR Conference Centre, Pretoria

SARF SARF

A multi-disciplinary approach to improve capacity & safety for road transport in Africa

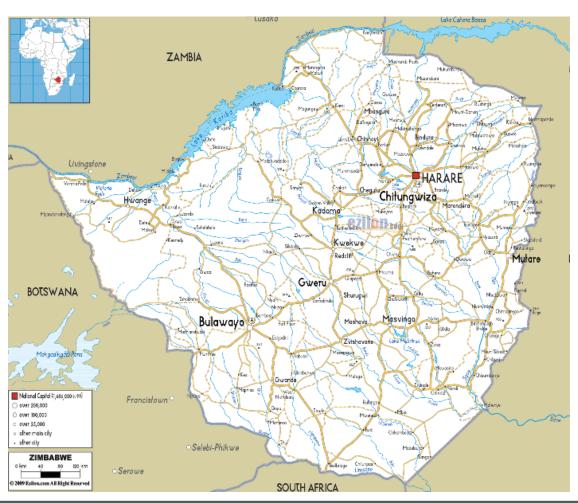
Highways with high traffic volume

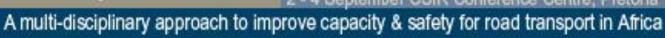
Dual Carriageway in South Africa


Typical Single Carriageway road in Africa

Comparison of road access

Road linking major cities


Road linking villages to markets



Zimbabwe road network

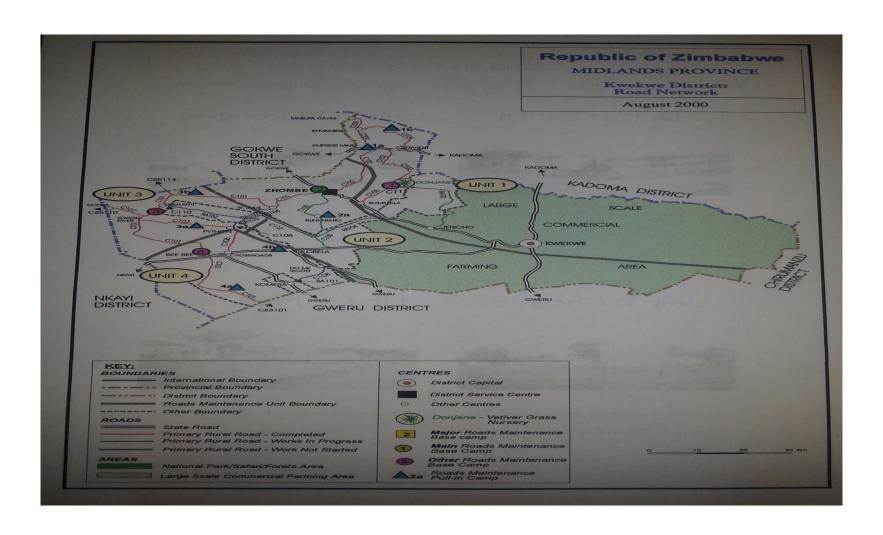
21 500km Primary feeder roads and 3500km of secondary roads identified

SARF/IRF 2014 BETTER ROADS Moving Africa 2 - 4 September CSIR Conference Centre, Pretoria

Planning process

Planning criteria

- Flat and rolling terrain 10km Primary roads
- Hilly terrain 3km
- Secondary roads in flat and rolling 5km
- No secondary roads in hilly terrain


Planning procedure

- Road selected and submitted by community through local representatives
- Simplified economic evaluation
- Priority ranking derived from economic significance

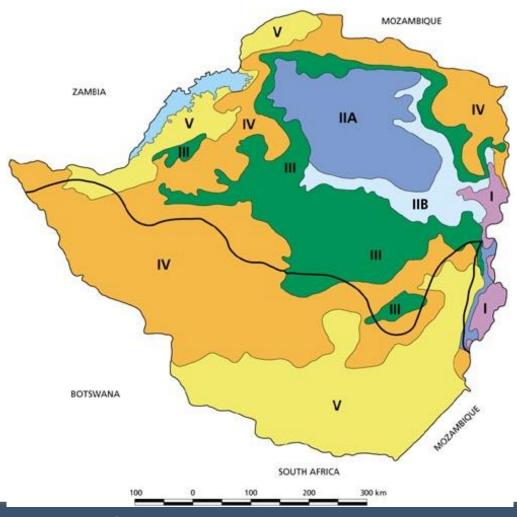
SARF/IRF 2014 BETTER ROADS Moving Africa 2 - 4 September CSIR Conference Centre, Pretoria

SARF MANAGEMENT AND ADDRESS OF THE PARTY OF

A multi-disciplinary approach to improve capacity & safety for road transport in Africa

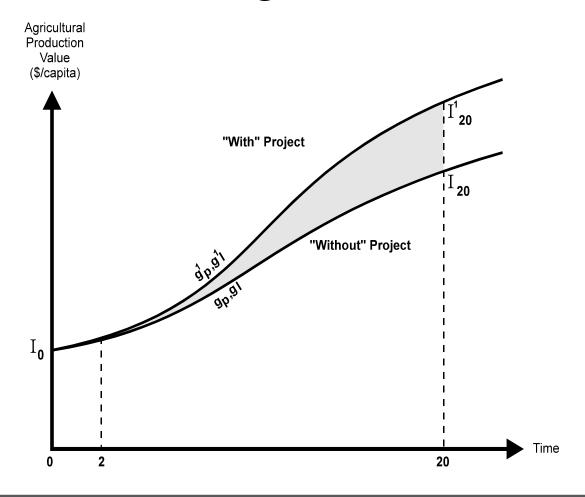
Rural unpaved road

Rural road through agricultural land



Agro ecological regions

NATURAL REGION	RAINFALL	SURFACE AREA
I	SPECIALISED AND DIVERSIFIED FARMING Rainfall:900 - 1000mm per annum.	7000sq km (less than 2% of the total area of Zimbabwe)
II	INTENSIVE FARMING Rainfall: 750-1000mm per annum	58600sq km(15% of the total area of Zimbabwe)
III	SEMI-INTENSIVE FARMING Rainfall: 650-800mm per annum Production	72900sq km (19% of the total area of Zimbabwe.)
IV	SEMI-EXTENSIVE FARMING Rainfall: 450-650mm per annum	147 800sq km(38% of the total area of Zimbabwe)
V	EXTENSIVE FARMING Rainfall: Too low and erratic for production of drought resistant fodder and grain crops.	104 400sq km (27.5% of the total area of Zimbabwe)



Agro – ecological regions of Zimbabwe

Incremental Agricultural Benefits

INH/sq.k m	STANDARD BENEFITS FROM CROP PRODUCTION PER REGION/PERSON						
	II Flat	III Flat	1V Flat No cattle	IV With cattle	l Very hilly	II Hilly	III Very hilly
2.5 -5.0	-	-	-	158	-		
5.1 -7.5	-	-	-	433	-	15x100km²x5	0.4
7.6 -10.	-	-	-	452	<u>-</u> >	=756000	304
10.1-15	504	388	193	560	-		
15.1-20	484	372	182	562	-	587	208
20.1-30	504	388	168	511	-	459	197
30.1-40	322	248	109	415	-	296	153
40.1-50	141	108	61	-	455	186	94
50.1-60	97	75	46	-	321	124	47
60.1-70	-	-	37	-	215	76	
70.1-80	-	-	-	-	150	59	2 4 44
80.1-90	-	-	-	-	96	→	100km²x 141 1000
90.1-100	-	<u>-</u>	-	-	60		

Cattle Benefits/km²per head

Cattle density /km²	Region IV \$/Head	Region V \$/Head
0 -4.0	492	424
4.1 – 8.0	264	20X100km ² x 254
8.1 -12.0	260	243 =\$50800
12.1 – 16.0	254	240
16.1 – 20.0	254	239
20.1 -24.0	248	223
24.1 – 28.0	206	199
28.1 -32.0	142	132 \rightarrow 32x100km ² x127
32.1 - 36.0	127	107 =\$406400
36.1 -40.0	91	64
≥ 40	82	61

Economic standard construction cost/km

TYPE OF TERRAIN	TYPE OF ROAD			
	PRIMARY A	PRIMARY B	SECONDARY	
FLAT	8932	5419	3844	
ROLLING	9590	6077	4403	
HILLY	13156	10622	8179	
VERY HILLY	30893	29247	21466	
KALAHARI SANDS	16983	14482	10098	

Economic standard periodic maintenance costs/km

TYPE OF TERRAIN	TYPE OF ROAD			
	PRIMARY A	PRIMARY B	SECONDARY	
FLAT	5319	1806	728	
ROLLING	5319	2784	728	
HILLY	5319	2784	728	
VERY HILLY	9883	8237	3586	
KALAHARI SANDS	13365	10804	6927	

Summary of costs

Total economic construction cost	= X
----------------------------------	-----

Total economic routine maintenance cost = Y

Total economic Periodic maintenance cost = Z

TOTAL COSTS = X+Y+Z

Summary of benefits

Natural region	Standard benefits/region cropping & livestock	Total benefits
I,II,II,IV &V		
Total benefits	Population x benefits per= head	

Benefit cost ratio

Total benefits/total costs = BCR

Conclusion

- The approach assumes that all benefits after construction of roads are a result of the improvement.
- The system is viable when you have reliable agricultural data
- The approach needs to be complemented by using other non transport benefits
- Where new areas are being opened the producer surplus approach is suitable