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1 APPLICATION 

Paper is a patient medium, and it is possible to create the most complex combinations of 

straight lines and curves of constantly varying radii.  For example, designers, at one stage, 

were very taken with the concept of curvilinear alignment.  This was a radical departure from 

the traditional system of locating tangents in the first instance and then connecting these with 

curves.  The curvilinear approach was considered frightfully artistic and principally comprised 

the initial location of curves - circular, compound or spiral - and then connecting these with 

relatively short straights.  The end result may have been visually pleasing, but it certainly 

didn't do the driver any favours and also presented the road builder with a challenge that he 

could quite comfortably have lived without.  In terms of our philosophy of systems analysis it is 

an example of pursuing a minor objective by sacrificing a major objective - a contradiction in 

terms. 

 

The designer, in developing his design of an abstract ribbon in space, needs to define the 

shape he has created in some fashion, or it otherwise remains nothing more than a pretty 

picture.  The system of definition universally employed is to describe a series of points along 

the route.  The route then comprises the line passing through these points.  Any point in 

space can be defined by the use of three numbers, referred to as the co-ordinates of the 

point, with each number representing a distance from a given datum point.  The designer 

could simply scale these distances off his drawing in respect of each point. He would however 

have some difficulty in describing his datum point to the road builder.  Furthermore, scaling to 

an accuracy of one millimetre on a drawing may demonstrate that a straight line is distinctly 

crooked when subjected to scaling up by a factor of 1 000.  A greater degree of precision than 

that provided by scaling is required.  This is provided by co-ordinate calculation.  

 

Ultimately, the picture that the designer has created has to be transferred from the drawing 

board into reality - the route must be set out in other words.  This represents one of the 

restraints under which the designer works because, if it is not possible to set out the design, 

all his efforts have been a waste of time.  Setting out comprises the process of relating the 

points on his route as defined by the designer to known points on the earth's surface.  These 

known points comprise a hierarchy of primary, secondary, and tertiary trigonometrical survey 

beacons, located to high orders of accuracy.  The surveyor uses these to establish points 

fairly close to where the road is ultimately meant to be located and then measures from these 
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local survey beacons either to centreline pegs or to reference pegs offset to one side of the 

road or the other.  The surveyor is thus also concerned with co-ordinate calculation.  With 

rapid advancements in the accuracy and availability of survey instruments that make use of 

satellite tracking and positioning, it is common practice today to use this form of surveying for 

most road design and construction projects.  The fundamental differences of this form of 

survey to that previously adopted is covered in more detail in section 2 hereafter.   

2 THE GRID SYSTEM 

Prior to the use of satellite positioning, each country or geographical area around the world 

established and used their own system of survey measurement.  In South Africa, the datum 

point from which all measurements on the earth's surface are made is the intersection of 

Longitude 0, which passes through Greenwich, and the Equator.  The system used in the 

Northern Hemisphere is known as the Gauss System.  True North is taken as the zero 

bearing and angles are measured in an anti-clockwise direction.  Distances increase from 

South to North on the x-axis and from West to East on the y-axis. 

 

In the Southern Hemisphere, the Gauss System is also used but the system is rotated twice.  

Rotation is about the Equator and then about Lo 0.  The zero bearing is thus true South.  

Distances increase from North to South on the x-axis and from East to West on the y-axis.  

Confusingly enough, when distances are quoted in terms of degrees longitude, the positive 

direction is still from West to East.  Bearings increase in a clockwise direction.  This rotated 

system is known as the Gauss Conform System. 

 

Elevations are typically measured from a datum of mean sea level (MSL) or low water 

ordinary spring tide (LWOST). 

 

The more commonly used system these days is the Universal Transverse Mercator projection 

and grid system which was adopted by the U.S. Army in 1947 for designating rectangular 

coordinates on large scale military maps. With the advent of inexpensive GPS receivers, 

many other map users are adopting the UTM grid system for coordinates that are simpler to 

use than latitude and longitude. 

The UTM system divides the earth into 60 zones each 6 degrees of longitude wide. These 

zones define the reference point for UTM grid coordinates within the zone. UTM zones extend 

from a latitude of 80° S to 84° N. In the polar regions the Universal Polar Stereographic (UPS) 

grid system is used. 

UTM zones are numbered 1 through 60, starting at the international date line, longitude 180°, 

and proceeding east. Zone 1 extends from 180° W to 174° W and is centred on 177° W. 
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Each zone is divided into horizontal bands spanning 8 degrees of latitude. These bands are 

lettered, south to north, beginning at 80° S with the letter C and ending with the letter X at 84° 

N. The letters I and O are skipped to avoid confusion with the numbers one and zero. The 

band lettered X spans 12° of latitude. 

A square grid is superimposed on each zone. It's aligned so that vertical grid lines are parallel 

to the centre of the zone, called the central meridian. 

UTM grid coordinates are expressed as a distance in metres to the east, referred to as the 

"easting", and a distance in metres to the north, referred to as the "northing". 

 

Eastings 

UTM easting coordinates are referenced to the centre line of the zone known as the central 

meridian. The central meridian is assigned an easting value of 500,000 metres East. Since 

this 500,000m value is arbitrarily assigned, eastings are sometimes referred to as "false 

eastings" 

An easting of zero will never occur, since a 6° wide zone is never more than 674,000 metres 

wide. 

Minimum and maximum easting values are: 

160,000 mE and 834,000 mE at the equator 

465,000 mE and 515,000 mE at 84° N 
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Northings 

UTM northing coordinates are measured relative to the equator. For locations north of the 

equator the equator is assigned the northing value of 0 metres North. To avoid negative 

numbers, locations south of the equator are made with the equator assigned a value of 

10,000,000 metres North. 

Some UTM northing values are valid both north and south of the equator. In order to avoid 

confusion, the full coordinate needs to specify if the location is north or south of the equator. 

Usually this is done by including the letter for the latitude band. 

If this is your first exposure to the UTM coordinate system you may find the layout of zones to 

be confusing. In most land navigation situations, the area of interest is much smaller than a 

zone. The notion of a zone falls away and we are left with a simple rectangular coordinate 

system to use with our large-scale maps. 

Frequently, in land navigation, the zone information and the digits representing 1,000,000m, 

and 100,000m are dropped. The 1m, 10m and 100m digits are used only to the extent of 

accuracy desired. Note that it's the smaller digits that are dropped in the notation used by the 

USGS on the edges of their maps. For example, 4282000 m N. becomes 82. 

ALL UTM zones cover six-degree swaths. In South Africa, where we use Transverse Mercator 

as well as Universal Transverse Mercator (UTM), each of our Lo systems cover only two 

degree swaths.  As a result of this difference, in SA we have a scale enlargement correction 

of 1.0, in other words there is no scale enlargement. In any other area where UTM is utilised 

there is a scale enlargement correction of 0.9996 – this is a mean scale enlargement 

correction over a six-degree swath. There will be discrepancies in scale enlargement over the 

six-degree swath but this is the mean and is applied throughout the zone. A more precise 

correction for a specific area can be achieved by measuring with a total station between any 2 

points that have been fixed with the GPS and divide the total station distance by the GPS 

UTM obtained distance and this will give you a factor to apply to any further measurements in 

the area. 

  

With the grid properly defined, any point on the Earth's surface can thus be completely 

described by a distance from each of the datum planes and is thus quoted as (y, x, z) with x 

being measured from the Equator, y from Lo 0 and z from MSL or LWOST.  In practice, 

measuring from the Equator and Lo 0 would result in being required to use some rather 

unmanageably large numbers and the datum points are shifted by the use of constants.  In 

the Western Cape, the y value is measured from Lo 19 and, by the time you get to the 

Eastern Free State, reference is to Lo 27. The datum for values of x is shifted by 10 000 000 

m South from the Equator.  The value of z is the height above sea level so that reference is 
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sometimes to h instead of z.  Just about all of South Africa is at an altitude of 2 000 m or less 

so that it is not necessary to have a shifted datum for altitude.   

 

It should be self-evident that, whatever datum shift is selected, it must be common to all the 

points for which co-ordinate calculations are required.  Trying to calculate a distance between 

two points when one is quoted on the basis of Lo 21 and the other on Lo 23 is downright 

inconvenient. 

 

It does not automatically follow that this system is always employed.  A survey of limited 

extent may perhaps be based on a purely arbitrary local grid.  The surveyor confronted by an 

elderly farm diagram could well find that one of the corners is taken as being (0, 0) and one of 

the boundary lines taken as 0
0
, with the unit of measurement being the Rhineland rood.  

Height could be measured from the top of a peg driven into the ground at some convenient 

point, with the top of the peg being assumed to be at a level of 100,00.   

 

Local systems can represent a major problem to the surveyor.  It is not known whether this 

system has now been scrapped but some 25 years ago, any work which went over the 

boundary between the Cape Town Municipal and Divisional Council areas had to take 

cognisance of the fact that the Divisional Council worked on Gauss Conform from Lo 19 and a 

datum of mean sea level whereas the Cape Town Local System had a zero direction which 

was not quite true South and a datum of Low Water Ordinary Spring Tide.  The actual co-

ordinates did not differ all that much so that if the surveyor did not know about the differences 

in system, he could spend many happy days looking for a mistake in his calculations.  

 

The Rhineland rood is equal to 12 Cape feet which is the unit in which all horizontal distances 

were measured.  Heights were always measured in English feet.  This, of course, meant that 

many errors were made in the calculation of gradient, although design invariably used English 

feet throughout.  Design now employs the metre, but there are still many farm diagrams on 

which the old units of measurement appear.  

3 BASIC CALCULATIONS 

All the designer requires is a reasonable knowledge of geometry and trigonometry and the 

ability to solve a single equation of the form 

 

  x2 = x1 + δx 

 

A few other manipulations may also be called for, of course.  For the purpose of this 

discussion, we are however limiting ourselves to the single equation.  Solution can be either 

to find δx with known values of x1 and x2, or to find x2 from known values of x1 and δx.  Almost 

all forms of co-ordinate calculation are merely various combinations of the two presentations 



 

 

 

 

 

Page 6  Lecture T5   

  SARF Geometric Design 

of this equation known respectively as the Join and the Traverse (or Polar). 

 

3.1 The Join 

The only time the designer ever actually scales anything is when he determines the co-

ordinates of the two points that are the terminals of a straight.  These are the points of 

intersection (PI's) of the straight of interest with the straights on either side of it.  The distance 

between the two points is required, if for no reason other than to determine chainages, also 

referred to as stake values in the metric system, along the route.  The bearing calculated is 

required to be able to calculate curve data. 

 

The major application of the Join is in the setting out of works.  The surveyor sets up over a 

known point and requires to peg another point given to him by the designer's calculations.  He 

therefore needs to know what distance to tape from his set up point and in what direction. 

 

Setting out is normally done to an accuracy of 5 seconds of bearing and 10 mm of distance so 

that the scaled values are used to calculate a distance and bearing between the two points.  

These are then rounded off to the nearest 5 s and 10 mm and the coordinates of the second 

point recalculated.  Scaling thus only applies really to the first point of the entire route.  It 

invariably is the case that the terminals of the route are its intersections with other roads.  If 

these roads' centrelines have been fixed by co-ordinates then the location of the terminals is 

also by calculation rather than scaling. 

 

The calculation thus takes the form of getting the differences between the two sets of values 

(given as (y,x) with y increasing to the West and x increasing to the South) defining the points.  

The bearing is determined from  

 

  tan Θ = δy / δx 

 

The distance can be calculated in one of three ways, one of which is recourse to the Theorem 

of Pythagoras.  Normally, however the calculation used is  

 

  L = δy / sin Θ 

 

 or 

 

  L = δx / cos Θ 

 

Surveyors are somewhat attached to self-checking calculations so that both are usually 

employed.  The value of sine changes at its slowest in the region of 90
o
 and cosine at its 

slowest at 0
o
, so that the preferred calculation is dependant on the value of Θ. 
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Presenting the calculation in tabular form it is thus 

 

 

Item 

 

Y 

 

X 

 

PI 1 

 

y1 

 

x1 

 

PI 2 

 

y2 

 

x2 

 

Difference δ 

 

δy =  y2 - y1 

 

δx = x2 - x1 

 

tan Θ  

 

δy/δx 

 

Θ 

 

tan 
-1

 δy/δx 

 

L 

 

Δy / sin Θ 

 

Δx / cos Θ 

 

 

Most designers have programmable calculators, or alternatively the whole process of 

alignment calculation is computerised.  However, the above tabulation demonstrates the 

process to be carried out and the programming effort required is, at most, modest. 

3.2 The Polar (Traverse) 

The Polar is the calculation used during traverses, hence its alternative name.  The fieldwork 

involved in a traverse includes setting up at a point and reading the bearing and distance to 

the next point after having taken a back sight to the previous point for orientation purposes.  

In order to check the accuracy of the work, the traverse proceeds from a known point and 

closes on another known point.  It may also close at its starting point, when it is known as a 

closed traverse.   

 

The calculation required is to establish the co-ordinates of the various points along the 

traverse.  One application of this process is the determination of the co-ordinates of survey 

beacons along a route for subsequent use in setting out operations. 

 

It is quite likely that errors (not to be confused with mistakes) in distance or bearing 

measurements will result in the calculated co-ordinates of a point not matching its known 

values.  An adjustment, usually in terms of Bowditch's Compass Rule, is then applied.  This 

requires a join between the calculated and known values of the co-ordinates to quantify the 
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extent of the error.  This is then removed by a series of polars, one at each measured point.   

The polar uses the initially calculated co-ordinates and the bearing of the total error. 

The distance used is a fraction of the error distance derived and is proportional to the ratio 

between total length of traverse and the distance from start of traverse to the point of interest. 

 

Presenting the calculation as a tabulation, it takes the form 

 

Calculation Of The Polar 

 

Item 

 

Y 

 

X 

 

Ray 

 

Co-ords of Pt 1 

 

y1 

 

x2 

 

L 

 

Difference 

 

 

L sin Θ 

 

L cos Θ 

 

Θ 

 

Co-ords of Pt 2 

 

y2 = y1 + L sin Θ 

 

x2 = x1 + L cos Θ 

 

 

 

4 SETTING OUT OF WORKS 

The designer has toiled mightily on a 1:50 000 topographic map locating the route between 

Poepieskloof and Skilpadvrekvandors.  Being a sensible man, he stayed in his air-conditioned 

office and sent the surveyor out on site.  The surveyor put in a line of survey beacons and 

marked then with nice large white crosses, where after a run of aerial photographs is 

converted into a strip survey. 

 

The designer once again performs his esoteric magic and produces a set of scaled 

coordinates of Points of Intersection (PI's) and the radius of curvature that he has in mind at 

each PI.  The question is what is the surveyor now supposed to do?  And what he does is the 

setting out of the road. 

 

Inevitably, the scaled co-ordinates are going to produce bearings that run into the fourth 

decimal of a second and distances that are to the same order of millimetres.  He will therefore 

go through a sequence of joins and polars commencing at the first tangent.  The bearing and 

distance obtained from a join between the scaled co-ordinates are rounded off to something 

more useful and these are then used in a polar to calculate revised co-ordinate values of the 

next PI.  The process is repeated for each tangent up to the last PI. 

4.1 Setting out tangents 

The difference between the first and the second bearing at the PI is referred to as the angle of 
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deviation, Θ. 

 

The tangent length of the curve is the distance between the PI and the start or end of curve 

(BC and EC) and this is 

 

  T = R tan Θ/2 

 

The co-ordinates of the BC are derived by a polar using the PI coordinates, the tangent 

length, T, and the reciprocal of the bearing from PI 1 to PI 2 (the reciprocal simply being the 

bearing plus or minus 180
0
).  The EC coordinates are similarly derived by use of polar using 

the bearing from PI 2 to PI 3.  By definition, the first and last PI's do not define the location of 

curves and are the starting and end points of tangents.  This process results in a string of co-

ordinate values between which the surveyor can set out the tangents, e.g. from EC 1 to BC 2. 

 

The surveyor can now inspect his arsenal of survey beacons and select those closest to these 

points on the location of the route.  For the purpose of this explanation, survey beacons A and 

B are fairly close to EC 5 and beacons C and D close to BC 6.  A join from Beacon B to EC 5 

will give the bearing and distance between beacon and EC. 

 

The bearing doesn't help all that much until he knows which way is South.  A join between the 

two survey beacons, A and B, is required and this provides a bearing between two points 

which are defined on the ground by steel pegs set in concrete.  If he sets his tacheometer up 

over Beacon B and sights a ranging rod held at Beacon A, he knows what the bearing should 

be and he can adjust the horizontal circle of the tacheometer to provide this reading.  The 

instrument is now oriented and he can set out (or locate) the EC. 

 

The process is repeated at the BC. 

 

In theory, the surveyor can now set his instrument up at EC 5 and sight back to Beacon B to 

reorient the tacheometer and then proceed to set out the tangent.   This is by having his 

survey assistant and assistant's assistant move in the appointed direction armed with a 

hammer, steel tape and several pegs smiting the last-mentioned into the ground with the first 

mentioned at regular intervals as measured by the middle-mentioned.  Alternatively he could 

send his assistant galloping off to BC 6 with a ranging rod and then use that as a line of sight 

according to which the tangent can be set out.  Neither theory is all that good. 

 

The distance between survey beacon and EC is short, typically less than 100 m, whereas the 

tangent being set out could be anything up to 10 km long.  The accuracy of orientation is such 

that the closing error at the far end would be substantial.  It is thus better to align the tache 

according to points already defined on the tangent being set out.  So it would appear that 
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survey assistant plus ranging rod at the next BC is the preferred option.  In fact it is, but for 

one tiny problem.  The suggestion was made that the tangent could be 10 km long. 

The likelihood of the rod actually being visible is remote.  After all, the curvature of the Earth 

suggests that the horizon is about 9 km away ... 

 

It is thus necessary to select intermediate points along the tangent and to repeat the process 

described in respect of the EC, thereafter setting out the tangent between these intermediate 

points. 

 

If the surveyor were to set up at the EC and have pegs located at distances which are, say, at 

multiple of twenty metres from this point he would be treating himself, the designer and the 

contractor to wholly unnecessary problems.  Setting out means placing a peg on line at a 

prescribed distance, the stake value, from the starting point.  He must therefore now what the 

stake value of the EC is.   

 

It is safe to assume that the stake value of PI 1 is going to be selected to be zero.  The 

distance between PI 1 and PI 2 has already been calculated so that the stake value of PI 2 is 

known.  Subtracting the tangent distance of Curve 1, T1, from this stake value provides the 

stake value of BC 1.  The stake value of the EC is NOT the stake value of PI 2 plus the 

tangent distance, T1.  The curve length is the appropriate distance to add to the BC stake 

value to derive that of the EC and this is given as 

 

  L = R.ƏRad  = R . Θ° / 57,29578 

 

with the factor allowing for the fact that Θ would otherwise be expressed in radians. 

 

  To summarise:  SVBC  = SVPI - T  

  And    SVEC = SVBC + L 

 

Knowing what the stake value of the EC is, it is a simple matter to establish the position on 

the defined tangent of the next full stake value, and pegging proceeds in a routine fashion 

commencing from this point.   

 

Taping is not without its little problems.  Stake values are predicated on horizontal distances 

and the topography is seldom flat.  In consequence, if the taping team religiously puts in pegs 

at twenty metre intervals, they will inevitably pick up a closing error at the next known point. 

An experienced tape man will thus add a slope correction to the distance taped.  Seeing that 

the distance between known points should be not more than about 500 m and for preference 

about 200 m, errors of judgment will not be all that pronounced and, in any event won't be 

cumulative from end to end of the road.  The alternative is to provide the tape man with a 
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clinometer (which is a device now found only in museums or in conjunction with a 

thermometer and spring balances when precise taping with a calibrated steel tape is being 

carried out) and a table of slope corrections.  In any event, precise taping relies invariably on 

optical measures using infra-red light or laser or the more old-fashioned Tellurometer 

(invented in South Africa, by the way).  The alternative is simply not worth the effort. 

4.2 Setting out curves 

The likelihood that the surveyor will ever set out the PI of a curve is very low and for two 

reasons.  It is more than likely that the PI will be inaccessible by being inside a cliff face or out 

in space or across a river.  The second reason is more significant and that is that he doesn't 

really need it any way.  He will however have already located the BC and EC of the curve, 

and this is all he needs. 

 

A circular curve results from a constant rate of change of heading with increasing arc length.  

From the geometry of the circle, if the total change in bearing (the deviation angle) across the 

length of the curve is Θ then the angle between the first bearing and the line of sight between 

the BC and the EC is Θ/2.  The change in bearing per metre length of curve is thus 

 

  δΘ = Θ/2L 

 

The surveyor thus calculates a set of values of bearing appropriate to the various stake 

values to be set out. 

 

EXAMPLE: 

 

Curve 16 is to be set out and the following information has been provided: 

PI Coords  2 367,52 13 733,89 

PI Stake value  2 542,37 

Radius       600,00 

Bearing 1  23
0
 10' 15" 

Bearing 2  48
0
 32' 30" 

Stake interval      20 m 

 

Calculation of terminals 

 

Item 
  BC    EC 

Ray 
Y X Y X 

Co-ords of PI 2 367,52 13 733,89 2 367,52 13 733,89 135,054 

Difference -53,14 -124,16 101,22 89,42 203
0
 10'15" 

Co-ords  2 314,38 13 609,73 2 468,74 13 823,31 48
0
 32' 30" 
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Stake values 

 

PI   2 542,37 

Tangent    135,054 

BC 16   2 407,316 

Curve length 265,683 

EC 16   2 672,999 

 

δΘ 

Θ/2 = (48
0
 32' 30" - 23

0
 10' 15")/2 

  = 12
0
 41' 07,5" 

δ(Θ/2) =  0,047 746 
0
/m 

 

For 20 m   =  0,954 929 

For 12,685 m =  0,605 664 

For 12,999 m =  0,620 656 

 

Intermediate bearings for setting out 

 

Stake value δΘ Θ Bearing 

2407,315  23,170 833 23
0
 10' 15" 

2420 0,605 664 23,776 497 23  46  35 

2440 0,954 929 24,731 426 24  43  53 

2460  25,686 355 25  41  11 

2480  26,641 284 26  38  29 

2500  27,596 213 27  35  46 

2520  28,551 142 28  33  04 

2540  29,506 071 29  30  22 

2560  30,461 000 30  27  40 

2580  31,415 929 31  24  57 

2600  32,370 858 32  22  15 

2620  33,325 787 33  19  33 

2640  34,280 716 34  16  51 

2660  35,235 645 35  14  08 

2672,998 0,620 656 35,856 301 35  51  23 
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Unfortunately, the designer neglected to tell the surveyor that the curve actually went around 

the side of a hill so that the curve couldn't be set out from the BC - at least not all the way.  

The surveyor managed to get about half way round before the top of the ranging rod 

irrevocably disappeared from view.  Being equal to the occasion, he moved his tacheometer 

to SV 2 520 and sighted back to the BC, setting a value of 208
0
 33' 04" on the horizontal 

circle.  Swinging back through 180
0
, he was once more in business with an oriented 

tacheometer and could set out SV 2 540 by referring to the figures on his table.  Or could he? 

 

He could, if he wasn't particularly interested in his curve actually closing. 

 

In getting to SV 2 520, the deflection angle, Θ/2, became 5
0
 22' 49".  The tangent to the curve 

thus rotated through 10
0
 45' 38".  The true bearing of the tangent is therefore 

  23
0
 10' 15" 

  10
0
 45' 38"  

  33
0
 55' 53" 

so that by adding  0
0
 57' 18"  which is the deflection angle for twenty metres 

the true bearing is 34
0
 53' 11"    between SV 2520 and SV 2540. 

 

However, the surveyor would prefer to cut out recalculation of the balance of the curve and 

simply use the next value on his table, which is 29
0
 30' 32".  The difference between the true 

and the preferred values of bearing is 5
0
 22' 49" so that all he has to do is to subtract this 

value from the bearing used for orientation and he is back in business.  All that this exposition 

says is that, regardless of where he is on the curve, he orients by sighting back to the BC, and 

sets his horizontal circle as though this direction is the reciprocal of the bearing of the first 

straight.   

 

Measurement of distance is never actually along a true curve but along a series of chords 

which are relatively short in relation to the radius of the curve.  The error thus made is 

minuscule, being 0,3 mm over a distance of 20 m in the case of a 1 000 m radius curve and 8 

mm for a 200 m radius curve.  In the latter case, a purist may wish to tape chord lengths of 

19, 992 metres.  On the other hand, if the curve happens to be on a gradient of 3 % say the 

positive slope correction to be added is also 8 mm over 20 metres, thus cancelling out the 

correction already applied.  In the best traditions of swings and roundabouts, most surveyors 

don't bother. 

5 TRIANGULATION 

In the calculations discussed above, only a single ray was involved and the available data 

was sufficient to fix either the distance and bearing between two known points or, given one 

set of co-ordinates and the bearing and distance to the unknown point, its co-ordinates were 

uniquely defined.  In summary, from four items of information, two unknown items could be 
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calculated.  Consider the fact that the standard form of a linear equation is 

 

  y = ax  +  b 

 

If the two parameters, a and b, of the relationship are known, the single value of y, the 

dependant variable can be calculated for any value of x.  In co-ordinate calculation two items 

of information have to be calculated, hence the need for two equations and four items of basic 

input information. 

 

Triangulation is the name given to the process whereby the properties of the triangle are used 

to calculate the co-ordinates of an unknown point.  Triangulation is brought into play when the 

available data is not so conveniently arranged that either a simple Polar or Join will suffice.  

For example, the bearing to the unknown point from one known point and the distance from 

another may be known.  The trick is to reorder this information so that the unknown co-

ordinates can be calculated. 

5.1 Proper identification of a triangle 

The very name "triangle" suggests that three angles are involved.  It is however possible to 

have three connected rays, A B and C with B connected to A and to C, which do not form a 

closed figure.  In this case there are only two angles, hence the fact that "triangle" in relation 

to a closed figure is a better descriptor than "triside", unless the definition explicitly refers to a 

closed figure.  

 

Traversing a closed figure to end up pointing in the original direction obviously entails a 

course change of 360
0
.  Mathematicians express this more elegantly by saying that it is 

axiomatic that the external angles of a closed figure sum to 360
0
. 

Considering this in relation to a triangle, each external angle is also 

  Ext < A   = 180  -  Int < A 

  Ext < B  = 180  -  Int < B 

  Ext < C  = 180  -  Int < C 

    360   540  - (Int < A  +  < B  +  < C) 

 

from which it follows that the sum of the internal angles of a triangle is 180
0
.  

 

This bit of pure wisdom makes it possible, in terms of the fundamental linear relationship, to 

derive one new item of information, to whit the magnitude of the third angle of the triangle, 

from two items of information, being the magnitude of the other two angles.  It is then possible 

to construct a triangle knowing only what the magnitude of two of the angles is.  

Unfortunately, the triangle is not uniquely defined, because  

 it could have London, San Franciso and Pretoria as the points of the triangle 

or the points could be a pinhead away from each other.  Some indication of 



 

Lecture T5    Page 15 

SARF Geometric Design 

scale of the triangle is required such as its area or the length of one of the 

sides 

 the sequence of the angles hasn't been defined so that, effectively, one could 

be looking at it from the front or the back. 

 

With these further bits of information, it is possible to uniquely identify and thus construct the 

triangle. 

 

To the surveyor, the problem is however not adequately resolved because he needs one 

further item of information and that is the orientation of the triangle.  Is the base line of the 

triangle North-South or anything else through a range of 360
0
?  Only with this last piece of 

information also in hand is he in a position to uniquely solve the triangle.  

5.2 Solving the triangle 

All triangulation problems commence with knowledge of the co-ordinates of two points.  This 

knowledge identifies the scale of the triangle and its orientation, eg the baseline is 5 km long 

and has a bearing of 135
0
 27' 46".  The additional information required in order to 

geometrically construct the triangle could be a combination of 

 

(a) the lengths of the other two sides of the triangle, whereby the position of the third 

point is fixed by the intersection of two arcs.  Of course, the arcs intersect twice so that the 

surveyor is still required to resolve which of the two available answers is the one that he 

wants. 

 

(b) the length of one side and the opposite angle.  The triangle is then defined by the 

intersection of a line at the given bearing from the appropriate point on the baseline and an 

arc around the other end of the base line. 

 

(c) the two angles between the baseline and the unknown point which is then fixed by 

the intersection of the two rays. 

 

The basic principle is that, if the triangle can be drawn on paper, the position of its points can 

be calculated.  Calculation takes the form of deriving the information needed to be able to 

ultimately carry out a Join or a Polar from one or other of the two points defining the base line. 

 

(a) Two sides known (additional to the baseline length between A and B) 

 

From the figure it can be seen that the height of the triangle, h, can be expressed as either 

 

   h = (lA
2
  -  x

2
)
0.5 

  or 
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   h = [lB
2
  -  (lAB  -  x)

2
]
0.5

 

 

from which it can be deduced that 

   lB
2
  -  lAB

2
  + lA

2
 

  x  = 
____________________

 

             2lA 

and  

  cos A  = x/lA 

 

so that the co-ordinates of Point C can be calculated by a Polar from Point A in terms of the 

distance lA and the bearing calculated from the bearing between Points A and B plus or minus 

the angle A. 

 

 

 (b) the length of one side known and the opposite angle (additional to the baseline 

length) 

 

In this case the well-known Sine Rule can be brought into play.  This states that 

C

c

B

b

A

a

sinsinsin
  
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Using this relationship, a (which is the side opposite to angle A and hence nothing more or 

less than lB) and sin A are known as is c (otherwise known as AB), so that sin C is calculable.  

With angles A and C known it follows that angle B is known.  A polar from B using the bearing 

from B and the distance lB gives the co-ordinates of the unknown point. 

 

(c) two angles known 

 

This is also an application of the Sine Rule.  The two known angles define the third so that 

both unknown sides can be calculated.  The co-ordinates of the unknown point are once 

again established using a polar. 

6 RESECTION 

The above calculations are based on the fact that the surveyor can set up at a point, the co-

ordinates of which are known.  Resection is the process of deriving the co-ordinates of the 

set-up point from observations to known points.  A case in point is creating a survey beacon 

close to the route from observations to remote trigonometrical survey beacons.   

 

The process can be geometrically compared to plotting, on a piece of tracing paper, rays from 

a point with the angles, as observed in the field, between them.  The tracing paper is then slid 

over a plan on which the known points have been plotted until the rays pass through the 

known points.  The point of intersection of the rays is the location of the unknown point.   

 

A minimum of three known stations is required to derive a unique answer so that resection is 

also known as the three-point problem.  If, in addition to the angle at the unknown point, only 

two points are known, the solution is not unique.  The best-known example of this is that if a 

circle is constructed such that its diameter is equal to the base line length, the angle at any 

point of the circumference of the circle is a right angle, ie half the central angle which in this 

special case happens to be 180
0
.  Any angle at the circumference less than 180

0
 simply 

means that the baseline is a chord of the circle and not the diameter (which, after all, is simply 

a special case chord). 

 

The figure illustrates the exercise. 

 

  Join A -- B provides the length AB and the bearing from A to B 

  Join B -- C provides the length BC and the bearing from B to C 

and 

  δ = BC - AB + 180 

so that 

  a + b = 360 - (α + ß + δ) 
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 The magnitude of angle a is given by 

 

   AB. sin ß 

  cot a =         -----------------------------    +   cot (a + b) 

               BC . sin α.  sin (a + b) 

 

 and with angle a known, angle b is also known. 

 

 

The Sine Rule gives 

 

  BP = AB . sin a / sin α  

 

and   BP = BC . sin b / sin ß 

 

which provides calculation and check calculation of the length of BP 

 

With two angles of the triangle ABP known the third is known, similarly the third angle of 

triangle CBP is known, hence providing calculation and check calculation of the bearing BP. 

 

With the length and bearing of BP known and the co-ordinates of B given, a polar from B to P 

provides the co-ordinates of the latter. 


